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Influence of confinement on the orientational phase transitions in the lamellar phase
of a block-copolymer melt under shear flow
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In this paper, we incorporate some real-system effects into the theory of orientational phase transitions under
shear flon[M. E. Cates and S. T. Milner, Phys. Rev. L& 1856(1989 and G. H. Fredrickson, J. Rhe@8,
1045 (1994)]. In particular, we study the influence of the shear-cell boundaries on the orientation of the
lamellar phase. We predict that at low shear rates, the parallel orientation appears to be stable. We show that
there is a critical value of the shear rate at which the parallel orientation loses its stability and the perpendicular
one appears immediately below the spinodal. We associate this transition with a crossover from the fluctuation
to the mean-field behavior. At lower temperatures, the stability of the parallel orientation is restored. We find
that the region of stability of the perpendicular orientation rapidly decreases as shear rate increases. This
behavior might be misinterpreted as an additional perpendicular to parallel transition recently discussed in
literature.
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[. INTRODUCTION In this paper, we propose an explanation of the additional
transition (C transition in Fig. 3. We argue that the missing
When subjected to a shear flowB block-copolymer element of the theory is the interaction of the block copoly-
melts exhibit an orientational phase behavior that is absent imer melt with the walls of the shear cell. We consider a
equilibrium. A system under shear shows not only transitionsblock copolymer film confined in between two walls in the
between different morphologid$ypically lamellar, hexago- gradient direction and subjected to a steady shear flow. Usu-
nal, cubic, and gyroid1,2]), but also transitions between ally the distance between the interfaces in the other two di-
different orientationsof these morphologies with respect to rections is much larger and we ignore their influence. This
the shear geometry. Experimental literature extensively dismodel will predict the parallel orientation to be stable in the
cusses this effect for lamelldB,4] and hexagonal phases D— < limit since the influence of shear and fluctuations van-
[5,6]. ishes in this limit. The only symmetry-breaking factor is then
The theoretical description of the lamellar reorientationthe wall-copolymer interaction that stabilizes the parallel ori-
was developed ifi7,8]. The same method was applied  entation [12,13. The complex behavior at lower shear
to study the hexagonal pattern. In these theories, orientaateswill arise from the interplay of three factors: shear flow,
tional transitions appear as a result of the interaction of shear
flow with critical fluctuations in melt. There are two distinct D/D,
regimes: a slow flow only slightly perturbs the fluctuation % =0
spectrum while a fast flow significantly dumps fluctuations,
restoring the mean-field behavior in the limit of infinite shear
rateD —oo. Correspondingly, the parallel lamellé&eir nor-
mal is parallel to the shear gradient direcjiane found to be
stable in the small shear rate regime, while the perpendicula
lamellae(their normal is perpendicular to both the gradient
and flow directionsare stable at high shear rates. Fredrick-
son has shown that if one takes into account the difference ir
viscosities of the pure melt components, the perpendiculai
phase loses its stability at low enough temperatures and th
parallel orientation is restored. Schematically, this behavior %
is summarized in Fig. 1. I
However, there is an experimental evidence that this pic-
ture is not complete. At very high shear rates, the parallel
orientation was found to be the only stable ¢&6,11]. This
cannot be explained in the discussed frameworf8&fsince
it predicts the stability region for the perpendicular phtse FIG. 1. Schematic phase diagram “temperature vs shear rate”
increaseasD — . as a compilation of the theoretical predictions by Fredrickson and
the experimentally observed transition. The order-disorder tran-
sition line behaves as~ D? for small shear rate® and r~D~?
*Email address: a.n.morozov@chem.rug.nl for D— . The B-transition line levels off in Fredrickson’s theory.
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G f It is convenient to work in dimensionless units and we res-
T EEEEEEEEEETEEEEEEEEEEEEEEESh—" cale lengths and wave vectors= b~ir andk—bk, b being

the size of a monomer.
FIG. 2. Orientations of the lamellar phase in a simple shear Following [24,7,§ we assume that the dynamics under
flow. The axes of the coordinate system correspond to the she&hear flow is governed by the Fokker-Planck equation:
geometry:x is the flow direction ¢), y is the gradient direction

(Vu,), andz is the vorticity direction ¥ X V). In the parallel ori- IP[ #,t] B ) oH

entaFion, the n(_)rmql to the Iamella_r layers is orientet_j para!lel t(_) the T: J r5¢(r) M 5h(1) + 5¢(r)

gradient direction, in the perpendicular—to the vorticity direction.

The walls iny direction interact with the melt and prefer one of the L)

components. +Dy— P[r.t], 2.3

fluctuat|ons_, and waII-_meIt Interactions. . . .where P[¢,t] is the probability to realize the order-
We admit that the influence of the surface interactions Iarameter profiles(r) at timet, and u is an Onsager coef-

possibly small. However, Balsagt al. reported[14] that in - : : :
the absence of shear, the walls of their shear cell induced ﬂ{ément. In the Appendix, we provide arguments for using the

. kker-Planck ion in f any other deterministic
parallel alignment through the whole 0.5 mm sample, al'egua(;:)n anck equation instead of any
though the lamellar spacing is somewhat four orders of mag- In Eq. (2.3), the Hamiltonian{ consist of two contribu-

nitude smaller. Under shear, Laumral.[15] observed that .. . G - -
independent of the bulk orientation, there is always a neart-lons' the bulk Hamiltonian derived by Leibl¢Z]
surface layer of the parallel lamellae that penetrates up to
2_ um into the bL!Ik._Thus, even a weak symmetry-breakingNHL[qﬂ: %J () () d(—q)
field can be crucial in the absence of other factors. q

We also want to mention that the equilibrium theory of 1
block-copolymer melt ordering near surfaces is well devel- + _J J J T's( )b(0y) d(0) (Qs)
oped[12,13,16—22 Some questions about dynamics of such 31 gy ) apJas 301, 02.95) $(Q) #(G2) H(0s
an ordering were addressed|[i23,20. However, until now 1
this theory was never applied to nonequilibrium systems. + _f J j f T 4(01,02,03,04)

Our paper is organized as follows. In Sec. I, we derive 4 g datazda,
the equations governing the dynamics of the melt and con-
struct a nonequilibrium potential whose minimal value will X ¢(01) #(A2) $(d3) #(a), 2.4
determine the stable orientation. In the first part of Sec. lll,
we estimate the shear rate of tharansition while the other and the surface energ#2,13
two transitions B andC) are analyzed in the second part. In a
conclusion we discuss in detail properties of the obtained NHff dr[—H1¢(r)+ 7¢(r)2}
phase diagram. In the Appendix we provide an example

L
=32

clarifying the role of thermal fluctuations.
where N is a number of monomers in a moleculel,

Let us consider a block-copolymer melt confined in be-~(xN)copsurt is the strength of the interaction between the
tween two surfaces in thedirection. It is also subjected to a surface, and the copolymer melt aag describes the addi-
steady-shear flow=Dy e, (see Fig. 2 We ignore any al- tional interaction in the melt induced by the presence of the
teration of this velocity profile and assume that it is keptsurface(it changes the local temperature in the vicinity of the
through the whole system. We choose the local deviation o$urface. Our goal is to construct a real-space version of the
composition from its average to be an order-parameéie) Leibler Hamiltonian¥, . In[25,26,13, it was shown how to

X| 6

L
y+ E)"‘(S , (25)

II. DYNAMIC EQUATIONS
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deal with the second-order vertex function. Separating small- 2N, +4N,
and large-wave-vector asymptotic behavior, one may show AN=NotN1+2N,, f=——7—5— (210
that NotAi+2N,

Thus, the required real-space representation of the Hamil-

A , — tonian’H may be written as
Fz(q)~E+Bq —Xs (2.6
where B , 1— , A
NH[¢]=f dr| 5 (V(1)*= Sx(r) +5f dr'g(r—r")
3
T 52 ' I's 3, Mo 4
2REf2(1—1)2 ><d>(r)¢(r’)+§¢(r) e
R L 3 (VD) V()
B=2ta—1) @7 4! do
6 (V. V g(1))?
NN 3 )1’2 27 o0 )22— h(r)é(r) |+ NHs,
= —_— + _— y 0
(2.1)
with f=N4,/N being the volume fraction of th& compo-
nent. In[12] the third- and fourth-order vertex functions where
were assumed to be constant. However, as it was noticed in
[8,9,27, it is crucial to keep the angle dependence of the _ ,
fourth-order vertex function in order to discriminate between gla-(r=r)
the parallel and the perpendicular orientations. There, the glr—r )—L @ (212

following approximation was made:

Here, we have added an auxiliary figddwhich will help us
['3(0y,02,03) = 8(0y+ 0o+ Gz) '3, to construct a thermodynamical potential governing the dy-
namics under shear. Afterwards it will be set to zero.
The Fokker-Planck Eq.(2.3) together with Egs.
.k,g,—k,—q)=x1-B(k-9)?), B<1, (2.9 (2.11,2.7,2.5form a phenomenological set of equations de-
scribing the dynamics of block-copolymer melt under shear
flow in the presence of surfaces. We do not solve these equa-
tions directly, but following 8] we use the method of Zwan-
zig [30] to derive a system of coupled equations for the first
}wo cumulants ofP[ ¢,t]

wherek=k/k. In Eq.(2.8), all the wave vectors are assumed
to have the same lengtff= \A/B, which corresponds to the
first unstable mode on the spinod&l]. The assumptio8
<1 was shown to be correct for almost every architecture o
AB block-copolymer moleculed27] (for example, for
diblocks 8<0.1). For an arbitrary star of 4's, one may c(r)=((r)),
write to the lowest order in angl¢28,29

T'4(01,02,03,04) = 8(q1 + G2+ G+ dg)[No+ A 1((Gs- G2) 1) =(A(r)é(12) ~(b(r)N$(r2)), (213

X(03-Qa)+(01-03)(Up-0a) +(Q1-04)  Wherec is the average order-parameter profile, and the struc-
ture factorS is a measure of the fluctuation strength. We
X(0-03))+ Ao((01- G2)2+ (01 - G3)2 introduce a generating functional

+(01-Ga) 2+ (G- G3) 2+ (Ao 04)?

+(03:9)%)], G[f’t]='09f D«zﬁexn“ dr ¢<r>§(r>}P[¢,t],

(2.19
A Ap
—<1. (2.9 . . .
)\0 No use Eq.(2.3) to derive an equation of motion f@[ &,t], and
then expand this equation in terms &f The two lowest-
Comparison with Eq(2.8) gives order equations read
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1&c(r)_ D dc(r) — ) , N ) No )
; pn ——;y x +BAC(F)+XC(r)—AJ dr’ G(r—r")c(r )—?[c(r) +S(0)]—§[c(r) +3S(0)]c(r)

¥ %[vawac(r){vC<r>}2>+éwAc<r>]— %[c(r)(vavﬁcm)%c<r>é+vavﬂ<c<r>2va
do Ao

2N1+4N, ~ L L
xVﬁc(r))JrS(O)AZc(r)]—T(Vavﬂc(r))saﬁJrh(r)+(H1—a1c(r)) 1) y+§ +4oly— E) ,
0
(2.15
and
1 9S(r—ry) D S(r—ry) — r
ﬂquS(r—rl)—;y I : +BAS(r—r1)+XS(r—rl)—AJ dr’g(r—r’)S(r’—rl)—?3
No ) )\1+2)\2~ N
X[S(0)+2¢(r)S(r=ry)]= [N+ SO ]S(r—r1) = ———SapVaVpS(r—ry)+ ——=
o 200
~ N
XVa[Z(VaC(r))(VC(r)-VS(r—rl))+(VaS(r—rl))(VC(r))2+SﬁﬁVaS(r—rl)]—2—;4[S(r—rl)
0
X(V V 50(1))2+S(r—11)S+2¢(r)(V 4V 5c(1))(V ,V 5S(r—r1))+ S(0)A’S(r —r1) + 2V, V 5(c(r)S(r—ry)
><VaVBc(r))+VaVB(c(r)ZVaVﬁS(r—rl))]—als(r—rl)[é y+% +6ly— %” (2.1
|
where cay exponentially away from the surface. Since we are only

5 B interested in the orientation of the lamellar profiie19, we
Sap=VoVpSr—r)p=r, S=VV V. VSr=r")| . ignore the spacial dependenceaofind set it constant. With
(2.17  these simplifications, the equation for the Fourier transform

) S(k) of S(r;—r,) from Eq.(2.16 reads
Here, we have neglected all higher cumulants and made use

of a natural assumptio8(r,,r,)=S(r,—r»). 1 9S(k) D d8k) __,
Apart from the surface terms, Eq&.15, 2.16 are the 2u at =1+ ﬂkx dk, — S (k)S(k), (2.20
real-space analog of the Eq&.25—-26 from [8]. Here, the
terms proportional t&5(0) play the role of the fluctuation where
integral o(k) from [8]:

Sot(k)=r—k-8 k+BK+ A %
k2 XSY

~ N IR
of=5] s@ii-pkan. 218
r—k-8k=2((xN)s— xN)+xa?(1— B(n-k)?)+ (k).
To keep our model as simple as possible, we leave only (2.21
the linear term in the surface ener@®.5 and puta;=0.
Then we set Here, we have introduced the same notation ag3ijf]. In
Eq. (2.21), Sy(k) is the equilibrium structure factor and
c(r)=2acogqon-r+¢), (219  —k-8 k denotes theenormalizedtemperature. Within the
fluctuation theory, the spinodal temperature determined from
h(r)=2hcogqon-r+¢), the condition
wherea is yet to be determined amplitude,is a unit vector r—k-8 R|a:O:0 (2.22

perpendicular to the surface of the lamellae, and a phase

shift that will be chosen to minimize the surface energy. Thediffers from the mean-field valuey(N)s. In the case3=0,
auxiliary field h simply follows the behavior o. Fredrick-  such a fluctuation correction was discussefBih]. The pres-

son has show12] that in equilibrium, the presence of the ence of shear breaks the rotational symmetry and the spin-
surfaces causes spatial variations of the amplitutieat de-  odal temperature becomesentation dependenthis gives
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rise to the—k- &k term, with e~ B [see Eq(2.8)]. Here,
the role of the angle dependencylin is especially transpar-

ent: if =0, we would not be able to discriminate between h
c

different orientations.
The method of characteristi€32] gives a formal solution
for the Eq.(2.20

S(k,t)zﬂfotdrexp[ —,ufofds gl( Ky Ky + %Dskx,kZ”.
2.23

The steady-state regime is approachetl-asc. The integra-
tion in Eq. (2.23 may be performed in the limiting cases
D—0 andD—< and will be discussed in the next section.

Now we derive an equation for the amplitudeWe sub-
stitute the lamellar profil€2.19 into Eq.(2.15 and perform
an averaging over the lamellar period

2l qgn,

o,
(2.24

Discarding the transverse orientations withw 0 [24,7,4,
we obtain

2w/ qgny 2mlgony

J, e,

Xdzcogqgon-r+e¢)---.

3
. r‘xnynzqo

<.. .>_ (277)3

1 oa
——=h—(r—n-§-n)a+2

_ 3
o A1-pB)a +n005(¢)5n§,1,

(2.295

where n=H;qq/m, and .2, is the Kronecker delta-symbol

y
that is nonzero only for the paralle|n(|=1) orientation.
Following [8], we notice that Eq(2.25 has a gradient form
(with h=0)

109

2 da’

1&a_ 22
w (2.26

Since the potentiad can only decrease with time

2

b 9P ga
= = <0,

oS o
gt Ja at

2

P
oa

(2.27

the steady-state of the system will be determined by the

minimum of ®. Now we use the auxiliary field to construct
®. In steady-stat@a/dt=0, and® is obtained by integrat-

ing

19 -
"2 (229
Using h from Eq. (2.25, we obtain
cI>=<I>O—217a5n§V1, (2.29

where

1

®o=—7

A(l—B)a4+2fada’(r—n-§-n)a’. (2.30
0

PHSICAL REVIEW E 64 051803

In Eq.(2.29, we have already minimized with respect to the
phase-shifty, assuming thaa>0 (the other terms depend
only on even powers o& and are not influenced by this
oice.

The nontrivial dependency of-n-€-n onacomes from

the term proportional ta-(k) in Eq. (2.21) and the potential

® appears to be dependent on the fluctuation integral via Eq.
(2.30. Now we are ready to discuss the stable orientations in
different regimes.

Ill. PHASE TRANSITIONS
A. Crossover from small- to high-shear rate behavior

In this section, we analyze the transition from the parallel
to perpendicular orientation caused by increase of shear rate
(the A transition in Fig. 1. We start with noticing that at low
shear rates, the parallel orientation is the only stable one.
Indeed, as it was shown by Fredricks(@], @, is minimal
for n§=1 in the limit D—0. The surface term in E¢2.29
also favors the parallel orientation. Thus, our theory does not
modify Fredrickson’s prediction for small shear rates.

At high shear rate® — o, the integration in Eq(2.23
may be performedi24], yielding

ng 2/3
S.(k)=cy m) : (3.9
where
F@) db
COZW and CY:?. (32)

For the intermediate shear rat€(k) may be interpolated
betweenS, andS,, [7]

L A _—
S(k)={r—k-‘é-k+8k2+ﬁ—xs

2/3‘| -1

One should realize that the previous equation is an analytic
continuation of theD —oo behavior toD <o values. As a
result, a smalb behavior of Eq.(3.3) does not correspond

to theD — 0 behavior of Eq(2.23. On contrary, it describes
theD~0O(1) region. Since we expect thfetransition to lay

in between theD~0O(1) and D—x regions, we need to
calculate the fluctuation integra}(R) in between these re-
gions. This may be done in several steps. First, weS{ke
from Eq. (3.3 to perform the radial part of the integral in Eq.
(2.18. This gives

VaDlkk,|

1
+_
n93

- (3.3
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o(k)y~ ———
( 1672

1/3
R

D\a

v
— tarcta

|axay |
)7

=

As a next step, we expand the integrand <1 andD

— B(k. Q)2
fdﬂl B(k-q)

qO\/C—O

X =
|a,q,|

5 (3.9

>1 and sum these expressions keeping only the few firs

terms. Integration over the orientations of the unit vea&or
(fdQ=[7desin()[3"d¢) then gives

. A @ g\ 1 .
0‘(|()=m5/2 ? — 4 1—§ +g[|1—ﬁ(|2(kx
+Kk2)+15kH)]+ 477221/3@2[ 1- $(2R§+ 2k
+3k%) +zz[|4—ﬁ<ls<R§+R§>+|6R§>J], (3.5
where
1/3
Z=\J4mc, F*} , D, =Aua,
5\2 5\ (11
i} Gt i gl
=2 (13) 1272 (19) ’
ri5 I\
5\2 (3
F(é F(z
|3:2 19 y
T(F)
1\3 1\ (7 3 [1)\?
_F(é) i gl ) (3l
|4—ﬁ, |5— 11) ) 6_2(—11)-
3 a3

This procedure relies on a number of approximations. How-

ever, any direct analysis of E(R.23 is impossible and we
use Eq.(3.5 for moderate shear rates.

PHYSICAL REVIEW E64 051803

Der D
.

-7

FIG. 3. Schematic behavior of the spinodal temperatures for the
parallel and perpendicular orientations in the vicinity of the cross-
[7+0(n)]?

over point.
9 27'+0'(n)
"i-p) 2N T Raopine @0

The order-disorder transitiofODT) occurs whend be-
comes negative. The corresponding transition temperature is

q):

7s(N)=—0o(n), (3.9
which coincides with Eq(2.22). The orientation with the
lowest o will appear immediately below the ODT tempera-
ture. The crossoveithe A transition is then located at such
a value ofD that oy— o, changes its sign. From E.5),
this point is given by

1 472
I T 513 4 200 1) —
O'H g 322(|3 |2)+ 7 2 3Z+Z (IG |5) O,
(3.9
and is found to be

D ~4X100ua. (3.10
From Eg. (3.9 it also follows thatrl>7§ for D<D,,
which fits the weak-shear behavior discussed in the begin-
ning of this section. Whe®>D,,, the perpendicular orien-
tation first appear below the spinodal. This crossover is de-
picted in Fig. 3.

As it was noticed beforg7,8], the mean-field behavior is
restored in the limiD —o0. On the other hand, the smal-
region is dominated by fluctuations. ThiX,, may be inter-

Since Eq/(3.5 does not depend on the renormalized tem-preted as a position of a crossover from the fluctuation to

perature, the integration in E.30 is trivial and gives
1
d=[7+0o(n)]a®+ Z)\a4(1—,8)—217a6n§,1, (3.6

where
7=2((xN)s— xN).

Minimization with respect t@ gives to the first order i

mean-field behavior. The scaling properties®f, follow
from Eg. (3.10 and are determined by the Onsager coeffi-
cient . Using the results of33—36(u= g3\ (qo)/N with A
from [34,35) we obtain

DcrNN_sv (3.11
which shows that the fluctuation region disappears in the
limit N—-oo. In equilibrium, the same conclusion was drawn
in [2,31].
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Finally, we emphasize that the results of this section are fluctuations mean-field
independent of the surface interaction. The same results ma D, D, D,
be obtained within the Fredrickson thed8] (7= 0). Twr=0

B. B and C transitions

In the previous section, we have discussed the order-
disorder transitions. Now we consider lower temperatures
and look for transitions between different orientations in the
strong-shear limit. The corresponding free energies are givel
by Eq. (3.7

B (7+ O'H)z T+ o
YT Xap N ARy O

o - (r+0,)?
- AN1=-8)"
-1
whereo(n) is given by its high-shear limit of Eq3.5)
o3 s 1/3\/_ FIG. 4. Phase diagram for the lamellar phase under steady
(aN) D, 2+%\3 B simple shear flow as predicted in this work.
O'(I”I)ZW D T\/C—O 1—7(2n§+3n§) .

(3.13 At low shear rates, the parallel orientation is preferred by
both the shear and surface terms in E§29. Therefore, it

To the leading order irD, /D, the transition from the is the only stable orientation in that part of the phase dia-
perpendicular to parallel orientation occurs at temperaturegram. When shear rate reaches the vdlye given by Eq.

that are the roots of the equatidn=®, (3.10, the perpendicular orientation becomes stable immedi-
4 ately below the ODT temperature. We associate this change

= g (g)—0y) in orientation with the crossover from the fluctuation-
! | 872\ (1-8) " dominated behavior to the mean-field one. Indeed, at very

small shear rates, the equilibrium fluctuation spectrum is

272\ (1— B) only slightly modified by the flow, whilg at high shear rates,
TpE T, if 7]2)\(1—,8)>(0'||—0l)3, the flow strongly suppresses fluctuations and restores the
(oj=—0o)) mean-field behavior. Therefore, there is a crossover point

(3.14 and the corresponding change of orientation.
At high shear rates and away from the spinodal, the sur-

where . )
face influence starts to play an important role. In the narrow
21/3\/3_00 (aN)?3(D, |13 region betwee ., andD,, estimated from the condition in
- _*
om0 =B g 5972 ( D ) (3.19 Eq.(3.14
There,r; corresponds to the —|| transition, whiler, to the b _2(300)3/2 B Na?
reverse one. Now we summarize our results in a phase dia- 7% 5@ 1-B % 77259/2’
gram.

the influence of shear is still very strong and is capable of
stabilizing the perpendicular orientation at all temperatures.
The size of this region is very small due to the scaling

In this paper, we incorporated some real-system proper=N~'¥2 WhenD>D,, there appears a region where the
ties into the previously developed theory of the orientationaparallel orientation is stable. It takes over the perpendicular
phase transitions under shear fl§#~9]. In particular, we one atr=r; and looses its stability again at= 7, given by
considered the influence of the shear-cell boundaries in thEg. (3.14). This region grows as the shear rate increases, and
gradient direction on the orientation of the lamellar phase. Irin the limit D =00, the parallel orientation occupies the whole
equilibrium, the lamellae are known to orient parallel with range of temperatures (8¢). This coincides with the pre-
respect to the boundari¢$2,13. Under shear, the tendency dictions of the equilibrium mean-field theofy2,13. We
to orient parallel to the surfaces competes with the orientatherefore argue that there is no sh@rfransition as shown in
tion favored by the flow that appears as a result of the couFig. 1. Since the region between the spinodal and the parallel
pling between the flow velocity field and the order-parameteiphase shrinks with an increase of the shear rate, there will
fluctuations[7,8]. The interplay between these two factors always be some valuB, such that forD>D, the size of
produces the nontrivial phase diagram shown in Fig. 4.  this region will be smaller than the resolution of the experi-

IV. DISCUSSION OF THE PHASE DIAGRAM AND
CONCLUSION
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mental device. This valu®, may be misinterpreted as a corresponding theory. The importance of such a theory for a

position of an additional transition. system in electric field and simultaneously under shear was
An important feature of our theory is that it is able to outlined in[38].

reproduce th® transition without additional assumptions. In

the p_revious th_eor_{/8], F_r_edrickson had to take into account ACKNOWLEDGMENT
the difference in viscosities of the pure components in order _ _
to reproduce theB transition. Namely, he puy[ ¢]= 7o The authors want to express their gratitude to Evgeny

+ 716, which may be considered as a Taylor expansion ofolushkin for helpful discussions of the experimental details.
the viscosityy[ ¢]. As a result, in strong-shear limit, the size

of the stability region for the perpen_dicular_phase is of O_rderAPPENDIX: INFLUENCE OF THERMAL FLUCTUATIONS

of (5o/7,)? and grows a® — . While depicting the main

physics, this approach has internal problems since the deriva- Here, we want to emphasize the role of fluctuations in our
tive n, is not a well-defined object and therefore, the wholetheory. We are going to show that if the Fokker-Planck Eqg.
theory depends on a phenomenological parameter that is di2.3) is replaced by a deterministic one, the theory will not
ficult to estimate. Moreover, Fredrickson’s theory does notbe able to discriminate between different orientations. What
predict the C transition. Our theory is free from these probfollows should not be considered as a proof but, more likely,
lems. It, however, predicts the—_L transition at very low as an illustration that has general features.

temperatures in strong-shear limit, which was not observed. Let us consider a Langevin equation equivalent to the
There could be several explanations of this prediction. FirstfFokker-Planck Eq(2.3). If we now remove the noise term, it
this transition occurs at very low temperatures)(where  reads

the weak-segregation theory does not work. Second, this

transition might be an artifact of th®(») expansion. Fi- do ~ o, OHL

nally, this transition may be removed if we use Fredrickson’s Z tvVeé=puv 56 (A1)
argument about the viscosity dependence on the order pa-

rameter. It stabilizes the parallel orientation at low tempera- o~ i
tures. where an Onsager mobilify differs from w« in Eq. (2.3) and

It is possible that the absolute value of the surface inter?{L is the Leibler HamiltoniariEq. (2.11)] without s and
action is small. However, since it acts as Sammetry_ h=0. A similar equatlon was considered |]39] There the
breakingfactor, its influence is very importaft4,15. This ~ authors used a Hamiltonian wity =, =0 and showed that
statement may be checked experimentally. We have showif Stéady state, the theory predicts both orientations to be
that the positions of the transition lines in the strong-sheaqually stable at all shear rates. This is not surprising since
limit are dependent on the strength of the surface-copolymelheir theory does not contain fluctuations and the angular
interaction 7~ (xN) copsurs- Therefore, the phase diagram _dependence of the fourth-order vertex fu_nct_lbn—the_ two
of a particular copolymer system depends on the material dngredients that were argued to be crucial in explaining the
the shear-cell walls. A systematic study of this dependencyeorientation phenomeri&,9,27.
will provide arguments for or against our theory. In order to separate these two effects, we keep the angular

In this paper, we have considered the influence of th&lependence i, (N1, A,#0), but use the deterministic Eq.
walls in the gradient direction. We also want to comment on(Al). We follow the approach of39] and derive an ampli-
the role of the boundaries in the other shear directifiosy ~ tude equation from EqA1) assuming a single plane-wave
and vorticity. Formally, these walls will also induce align- density profile. The solution of this equation is
ment parallel to themselves. However, the flow profile near
those walls is no longer a simple triangular one and we ex- P(t)
pect this disordered flow to destroy their orientational ten- A(t)= >
dency. Moreover, the distance between those surfaces is nor- A(0)
mally much larger than between the walls in the gradient
direction and their influence is thus weaker. Therefore, weand
neglected them in our work.

Finally, we want to discuss, briefly, possible modifica- A Mt 2N; t
tions and extensions of the developed theory. A very inter- f()=1+4Q ()\—) P(t)=exr{ _ZJOdTU(T)
esting problem is to calculate the alterations of the density 0
profile in a confined system under shear. This may be
achieved by restoring the position dependency in the ampli-
tude a and deriving the corresponding amplitude equation
from Eg. (2.15. In the absence of shear, this problem was
solved in[12]. Another possibility is to use our formalism , . T TN .
for other external fields rather than interactions with sur—WhereA 'S the amplltudee—(x' Xs)/xs, and the gmplltude
faces. A good example is an electric field that is coupled tg*nd_the units of length and time are scaled witls /o,
the square of the order paramefd7,3§. With some modi- B/ s, andB/(,u;g), respectively. We see that the equation
fications Eqgs.(2.15, 2.16 may be a starting point for the becomes symmetric with respect to the interchasge q, .

t —1/2
+3P(t)j0d7f(T)P—1(r)] , (A2)

o) =(1+ Q- Q' . Q%=+ (g, Dia)*+aZ,

051803-8
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Thus, even in the presence of the angular dependenig, in transitions. There are phenomena where fluctuations only
it is impossible to distinguish between the parallel and permodify a deterministic behavidd0-42. However, the ori-
pendicular orientations starting from E@\1). entational behavior under shear flow does not belong to this
We believe that a theory without fluctuations of the orderclass of phenomena. It can only occur in the presence of

parameter is not capable of describing the reorientationaghermal fluctuations.
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