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Influence of confinement on the orientational phase transitions in the lamellar phase
of a block-copolymer melt under shear flow
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In this paper, we incorporate some real-system effects into the theory of orientational phase transitions under
shear flow@M. E. Cates and S. T. Milner, Phys. Rev. Lett.62 1856~1989! and G. H. Fredrickson, J. Rheol.38,
1045 ~1994!#. In particular, we study the influence of the shear-cell boundaries on the orientation of the
lamellar phase. We predict that at low shear rates, the parallel orientation appears to be stable. We show that
there is a critical value of the shear rate at which the parallel orientation loses its stability and the perpendicular
one appears immediately below the spinodal. We associate this transition with a crossover from the fluctuation
to the mean-field behavior. At lower temperatures, the stability of the parallel orientation is restored. We find
that the region of stability of the perpendicular orientation rapidly decreases as shear rate increases. This
behavior might be misinterpreted as an additional perpendicular to parallel transition recently discussed in
literature.

DOI: 10.1103/PhysRevE.64.051803 PACS number~s!: 83.80.Uv, 64.60.Ht, 83.50.Ax, 47.20.Hw
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I. INTRODUCTION

When subjected to a shear flow,AB block-copolymer
melts exhibit an orientational phase behavior that is absen
equilibrium. A system under shear shows not only transitio
between different morphologies~typically lamellar, hexago-
nal, cubic, and gyroid@1,2#!, but also transitions betwee
different orientationsof these morphologies with respect
the shear geometry. Experimental literature extensively
cusses this effect for lamellar@3,4# and hexagonal phase
@5,6#.

The theoretical description of the lamellar reorientati
was developed in@7,8#. The same method was applied in@9#
to study the hexagonal pattern. In these theories, orie
tional transitions appear as a result of the interaction of sh
flow with critical fluctuations in melt. There are two distin
regimes: a slow flow only slightly perturbs the fluctuatio
spectrum while a fast flow significantly dumps fluctuation
restoring the mean-field behavior in the limit of infinite she
rateD→`. Correspondingly, the parallel lamellae~their nor-
mal is parallel to the shear gradient direction! are found to be
stable in the small shear rate regime, while the perpendic
lamellae~their normal is perpendicular to both the gradie
and flow directions! are stable at high shear rates. Fredric
son has shown that if one takes into account the differenc
viscosities of the pure melt components, the perpendic
phase loses its stability at low enough temperatures and
parallel orientation is restored. Schematically, this behav
is summarized in Fig. 1.

However, there is an experimental evidence that this p
ture is not complete. At very high shear rates, the para
orientation was found to be the only stable one@10,11#. This
cannot be explained in the discussed framework of@8#, since
it predicts the stability region for the perpendicular phaseto
increaseasD→`.

*Email address: a.n.morozov@chem.rug.nl
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In this paper, we propose an explanation of the additio
transition (C transition in Fig. 1!. We argue that the missing
element of the theory is the interaction of the block copo
mer melt with the walls of the shear cell. We consider
block copolymer film confined in between two walls in th
gradient direction and subjected to a steady shear flow. U
ally the distance between the interfaces in the other two
rections is much larger and we ignore their influence. T
model will predict the parallel orientation to be stable in t
D→` limit since the influence of shear and fluctuations va
ishes in this limit. The only symmetry-breaking factor is th
the wall-copolymer interaction that stabilizes the parallel o
entation @12,13#. The complex behavior at lower shea
rateswill arise from the interplay of three factors: shear flo

FIG. 1. Schematic phase diagram ‘‘temperature vs shear ra
as a compilation of the theoretical predictions by Fredrickson
the experimentally observedC transition. The order-disorder tran
sition line behaves ast;D2 for small shear ratesD andt;D21/3

for D→`. TheB-transition line levels off in Fredrickson’s theory
©2001 The American Physical Society03-1
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fluctuations, and wall-melt interactions.
We admit that the influence of the surface interactions

possibly small. However, Balsaraet al. reported@14# that in
the absence of shear, the walls of their shear cell induced
parallel alignment through the whole 0.5 mm sample,
though the lamellar spacing is somewhat four orders of m
nitude smaller. Under shear, Laureret al. @15# observed that
independent of the bulk orientation, there is always a ne
surface layer of the parallel lamellae that penetrates up
2 mm into the bulk. Thus, even a weak symmetry-break
field can be crucial in the absence of other factors.

We also want to mention that the equilibrium theory
block-copolymer melt ordering near surfaces is well dev
oped@12,13,16–22#. Some questions about dynamics of su
an ordering were addressed in@23,20#. However, until now
this theory was never applied to nonequilibrium systems

Our paper is organized as follows. In Sec. II, we der
the equations governing the dynamics of the melt and c
struct a nonequilibrium potential whose minimal value w
determine the stable orientation. In the first part of Sec.
we estimate the shear rate of theA transition while the other
two transitions (B andC) are analyzed in the second part.
conclusion we discuss in detail properties of the obtain
phase diagram. In the Appendix we provide an exam
clarifying the role of thermal fluctuations.

II. DYNAMIC EQUATIONS

Let us consider a block-copolymer melt confined in b
tween two surfaces in they direction. It is also subjected to
steady-shear flowv5Dy ex ~see Fig. 2!. We ignore any al-
teration of this velocity profile and assume that it is ke
through the whole system. We choose the local deviation
composition from its average to be an order-parameterf(r )

FIG. 2. Orientations of the lamellar phase in a simple sh
flow. The axes of the coordinate system correspond to the s
geometry:x is the flow direction (v), y is the gradient direction
(“vx), andz is the vorticity direction (“3v). In the parallel ori-
entation, the normal to the lamellar layers is oriented parallel to
gradient direction, in the perpendicular—to the vorticity directio
The walls iny direction interact with the melt and prefer one of th
components.
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and define its Fourier transform as

f~k!5E dr e2 ik•rf~r ! and f~r !5E
k
eik•rf~k!,

~2.1!

where

E
k
[

1

L (
ky

E dkxdkz

~2p!2
and E dr[E

2`

`

dxE
2L/2

L/2

dyE
2`

`

dz.

~2.2!

It is convenient to work in dimensionless units and we r
cale lengths and wave vectors:r→b21r andk→b k, b being
the size of a monomer.

Following @24,7,8# we assume that the dynamics und
shear flow is governed by the Fokker-Planck equation:

]P@f,t#

]t
5E dr

d

df~r ! FmS d

df~r !
1

dH
df~r ! D

1Dy
]f

]x GP@r ,t#, ~2.3!

where P@f,t# is the probability to realize the order
parameter profilef(r ) at time t, andm is an Onsager coef
ficient. In the Appendix, we provide arguments for using t
Fokker-Planck equation instead of any other determini
equation.

In Eq. ~2.3!, the HamiltonianH consist of two contribu-
tions: the bulk Hamiltonian derived by Leibler@2#

NHL@f#5 1
2 E

q
G2~q!f~q!f~2q!

1
1

3!Eq1

E
q2

E
q3

G3~q1 ,q2 ,q3!f~q1!f~q2!f~q3!

1
1

4!Eq1

E
q2

E
q3

E
q4

G4~q1 ,q2 ,q3 ,q4!

3f~q1!f~q2!f~q3!f~q4!, ~2.4!

and the surface energy@12,13#

NHs5E dr F2H1f~r !1
a1

2
f~r !2G

3FdS y1
L

2D1dS y2
L

2D G , ~2.5!

where N is a number of monomers in a molecule,H1
;(xN)cop-sur f is the strength of the interaction between t
surface, and the copolymer melt anda1 describes the addi
tional interaction in the melt induced by the presence of
surface~it changes the local temperature in the vicinity of t
surface!. Our goal is to construct a real-space version of
Leibler HamiltonianHL . In @25,26,12#, it was shown how to

r
ar

e
.
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INFLUENCE OF CONFINEMENT ON THE . . . PHYSICAL REVIEW E 64 051803
deal with the second-order vertex function. Separating sm
and large-wave-vector asymptotic behavior, one may sh
that

G2~q!'
A

q2
1Bq22x̄, ~2.6!

where

A5
3

2RG
2 f 2~12 f !2

,

B5
RG

2

2 f ~12 f !
, ~2.7!

x̄52„xN2~xN!s…1S 3

f 3~12 f !3D 1/2

,

with f 5NA /N being the volume fraction of theA compo-
nent. In @12# the third- and fourth-order vertex function
were assumed to be constant. However, as it was notice
@8,9,27#, it is crucial to keep the angle dependence of
fourth-order vertex function in order to discriminate betwe
the parallel and the perpendicular orientations. There,
following approximation was made:

G3~q1 ,q2 ,q3!5d~q11q21q3!G3 ,

G4~ k̂,q̂,2 k̂,2q̂!5l„12b~ k̂•q̂!2
…, b!1, ~2.8!

wherek̂5k/k. In Eq. ~2.8!, all the wave vectors are assume
to have the same lengthq0

25AA/B, which corresponds to the
first unstable mode on the spinodal@2#. The assumptionb
!1 was shown to be correct for almost every architecture
AB block-copolymer molecules@27# ~for example, for
diblocks b<0.1). For an arbitrary star of 4q’s, one may
write to the lowest order in angles@28,29#

G4~ q̂1 ,q̂2 ,q̂3 ,q̂4!5d~ q̂11q̂21q̂31q̂4!@l01l1„~ q̂1•q̂2!

3~ q̂3•q̂4!1~ q̂1•q̂3!~ q̂2•q̂4!1~ q̂1•q̂4!

3~ q̂2•q̂3!…1l2„~ q̂1•q̂2!21~ q̂1•q̂3!2

1~ q̂1•q̂4!21~ q̂2•q̂3!21~ q̂2•q̂4!2

1~ q̂3•q̂4!2
…#,

l1

l0
,
l2

l0
!1. ~2.9!

Comparison with Eq.~2.8! gives
05180
ll-
w
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e
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l5l01l112l2 , b52
2l114l2

l01l112l2
. ~2.10!

Thus, the required real-space representation of the Ha
tonianH may be written as

NH@f#5E drFB

2
„“f~r !…22

1

2
x̄f~r !21

A

2E dr 8G~r2r 8!

3f~r !f~r 8!1
G3

3!
f~r !31

l0

4!
f~r !4

1
3l1

4!

„“f~r !•“f~r !…2

q0
4

1
6l2

4!
f~r !2

„“a“bf~r !…2

q0
4

2h~r !f~r !G1NHs ,

~2.11!

where

G~r2r 8!5E
q

eiq•(r2r8)

q2
. ~2.12!

Here, we have added an auxiliary fieldh, which will help us
to construct a thermodynamical potential governing the
namics under shear. Afterwards it will be set to zero.

The Fokker-Planck Eq. ~2.3! together with Eqs.
~2.11,2.7,2.5! form a phenomenological set of equations d
scribing the dynamics of block-copolymer melt under sh
flow in the presence of surfaces. We do not solve these e
tions directly, but following@8# we use the method of Zwan
zig @30# to derive a system of coupled equations for the fi
two cumulants ofP@f,t#

c~r !5^f~r !&,

S~r1 ,r2!5^f~r1!f~r2!&2^f~r1!&^f~r2!&, ~2.13!

wherec is the average order-parameter profile, and the str
ture factorS is a measure of the fluctuation strength. W
introduce a generating functional

G@j,t#5 logE Df expF E dr f~r !j~r !GP@f,t#,

~2.14!

use Eq.~2.3! to derive an equation of motion forG@j,t#, and
then expand this equation in terms ofj. The two lowest-
order equations read
3-3
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1

m

]c~r !

]t
52

D

m
y

]c~r !

]x
1BDc~r !1x̄c~r !2AE dr 8 G~r2r 8!c~r 8!2

G3

2
@c~r !21S~0!#2

l0

3!
@c~r !213S~0!#c~r !

1
l1

2q0
4 @“a„“ac~r !$“c~r !%2

…1S̃aaDc~r !#2
l2

2q0
4 @c~r !„“a“bc~r !…21c~r !S̃1“a“b„c~r !2

“a

3“bc~r !…1S~0!D2c~r !#2
2l114l2

q0
4

„“a“bc~r !…S̃ab1h~r !1„H12a1c~r !…FdS y1
L

2D1dS y2
L

2D G ,
~2.15!

and

1

2m

]S~r2r1!

]t
5d~r2r1!2

D

m
y
S~r2r1!

]x
1BDS~r2r1!1x̄S~r2r1!2AE dr 8 G~r2r 8!S~r 82r1!2

G3

2

3@S~0!12c~r !S~r2r1!#2
l0

2
@c~r !21S~0!#S~r2r1!2

l112l2

q0
4

S̃ab“a“bS~r2r1!1
l1

2q0
4

3“a@2„“ac~r !…„“c~r !•“S~r2r1!…1„“aS~r2r1!…„“c~r !…21S̃bb“aS~r2r1!#2
l2

2q0
4 @S~r2r1!

Ã„“a“bc~r !…21S~r2r1!S̃12c~r !„“a“bc~r !…„“a“bS~r2r1!…1S~0!D2S~r2r1!12“a“b„c~r !S~r2r1!

3“a“bc~r !…1“a“b„c~r !2
“a“bS~r2r1!…#2a1S~r2r1!FdS y1

L

2D1dS y2
L

2D G , ~2.16!
u

n

h

e

nly

rm

om

pin-
where

S̃ab5“a8“b8S~r2r 8!ur85r , S̃5“a“b“a8“b8S~r2r 8!ur85r .
~2.17!

Here, we have neglected all higher cumulants and made
of a natural assumptionS(r1 ,r2)5S(r12r2).

Apart from the surface terms, Eqs.~2.15, 2.16! are the
real-space analog of the Eqs.~2.25–26! from @8#. Here, the
terms proportional toS(0) play the role of the fluctuation
integrals( k̂) from @8#:

s~ k̂!5
l

2Eq
S~q!@12b~ k̂•q̂!2#. ~2.18!

To keep our model as simple as possible, we leave o
the linear term in the surface energy~2.5! and puta150.
Then we set

c~r !52a cos~q0n•r1w!, ~2.19!

h~r !52h cos~q0n•r1w!,

wherea is yet to be determined amplitude,n is a unit vector
perpendicular to the surface of the lamellae, andw is a phase
shift that will be chosen to minimize the surface energy. T
auxiliary field h simply follows the behavior ofc. Fredrick-
son has shown@12# that in equilibrium, the presence of th
surfaces causes spatial variations of the amplitudea that de-
05180
se

ly

e

cay exponentially away from the surface. Since we are o
interested in the orientation of the lamellar profile~2.19!, we
ignore the spacial dependence ofa and set it constant. With
these simplifications, the equation for the Fourier transfo
S(k) of S(r12r2) from Eq. ~2.16! reads

1

2m

]S~k!

]t
511

D

2m
kx

]S~k!

]ky
2S0

21~k!S~k!, ~2.20!

where

S0
21~k!5r 2 k̂•eI• k̂1Bk21

A

k2
2x̄s,

r 2 k̂•eI• k̂52„~xN!s2xN…1la2
„12b~n• k̂!2

…1s~ k̂!.
~2.21!

Here, we have introduced the same notation as in@8,9#. In
Eq. ~2.21!, S0(k) is the equilibrium structure factor andr
2 k̂•eI• k̂ denotes therenormalizedtemperature. Within the
fluctuation theory, the spinodal temperature determined fr
the condition

r 2 k̂•eI• k̂ua5050 ~2.22!

differs from the mean-field value (xN)s . In the caseb50,
such a fluctuation correction was discussed in@31#. The pres-
ence of shear breaks the rotational symmetry and the s
odal temperature becomesorientation dependent. This gives
3-4
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rise to the2 k̂•eI• k̂ term, with ei j ;b @see Eq.~2.8!#. Here,
the role of the angle dependency inG4 is especially transpar
ent: if b50, we would not be able to discriminate betwe
different orientations.

The method of characteristics@32# gives a formal solution
for the Eq.~2.20!

S~k,t !5mE
0

t

dt expF2mE
0

t

ds S0
21S kx ,ky1

1

2
Dskx ,kzD G .

~2.23!

The steady-state regime is approached ast→`. The integra-
tion in Eq. ~2.23! may be performed in the limiting case
D→0 andD→` and will be discussed in the next sectio

Now we derive an equation for the amplitudea. We sub-
stitute the lamellar profile~2.19! into Eq.~2.15! and perform
an averaging over the lamellar period

^•••&5
nxnynzq0

3

~2p!3 E
0

2p/q0nx
dxE

0

2p/q0ny
dyE

0

2p/q0nz

3dzcos~q0n•r1w!•••. ~2.24!

Discarding the transverse orientations withnxÞ0 @24,7,8#,
we obtain

1

m

]a

]t
5h2~r 2n•eI•n!a1

1

2
l~12b!a31h cos~w!dn

y
2,1 ,

~2.25!

whereh5H1q0 /p, anddn
y
2,1 is the Kronecker delta-symbo

that is nonzero only for the parallel (unyu51) orientation.
Following @8#, we notice that Eq.~2.25! has a gradient form
~with h50)

1

m

]a

]t
52

1

2

]F

]a
. ~2.26!

Since the potentialF can only decrease with time

]F

]t
5

]F

]a

]a

]t
52

m

2 S ]F

]a D 2

,0, ~2.27!

the steady-state of the system will be determined by
minimum ofF. Now we use the auxiliary fieldh to construct
F. In steady-state]a/]t50, andF is obtained by integrat-
ing

h5
1

2

]F

]a
. ~2.28!

Using h from Eq. ~2.25!, we obtain

F5F022hadn
y
2,1 , ~2.29!

where

F052
1

4
l~12b!a412E

0

a

da8~r 2n•eI•n!a8. ~2.30!
05180
e

In Eq. ~2.29!, we have already minimized with respect to th
phase-shiftw, assuming thata.0 ~the other terms depen
only on even powers ofa and are not influenced by thi
choice!.

The nontrivial dependency ofr 2n•eI•n on a comes from
the term proportional tos( k̂) in Eq. ~2.21! and the potential
F appears to be dependent on the fluctuation integral via
~2.30!. Now we are ready to discuss the stable orientation
different regimes.

III. PHASE TRANSITIONS

A. Crossover from small- to high-shear rate behavior

In this section, we analyze the transition from the para
to perpendicular orientation caused by increase of shear
~theA transition in Fig. 1!. We start with noticing that at low
shear rates, the parallel orientation is the only stable o
Indeed, as it was shown by Fredrickson@8#, F0 is minimal
for ny

251 in the limit D→0. The surface term in Eq.~2.29!
also favors the parallel orientation. Thus, our theory does
modify Fredrickson’s prediction for small shear rates.

At high shear ratesD→`, the integration in Eq.~2.23!
may be performed@24#, yielding

S`~k!5c0S mq0
2

AaDukxkyu
D 2/3

, ~3.1!

where

c05

GS 1

3D
~9p!1/3

and a5
q0

2B

p
. ~3.2!

For the intermediate shear rates,S(k) may be interpolated
betweenS0 andS` @7#

S~k!5F r 2 k̂•eI• k̂1Bk21
A

k2
2x̄s

1
1

c0
S AaDukxkyu

mq0
2 D 2/3G21

. ~3.3!

One should realize that the previous equation is an ana
continuation of theD→` behavior toD,` values. As a
result, a small-D behavior of Eq.~3.3! does not correspond
to theD→0 behavior of Eq.~2.23!. On contrary, it describes
theD;O(1) region. Since we expect theA transition to lay
in between theD;O(1) and D→` regions, we need to
calculate the fluctuation integrals( k̂) in between these re
gions. This may be done in several steps. First, we useS(k)
from Eq.~3.3! to perform the radial part of the integral in Eq
~2.18!. This gives
3-5
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s~ k̂!'
lq0

2Ac0

16p3 S m

DAa
D 1/3E dV

12b~ k̂•q̂!2

uq̂xq̂yu1/3

3Fp

2
1arctanS q0Ac0

uq̂xq̂yu1/3S m

DAa
D 1/3D G . ~3.4!

As a next step, we expand the integrand forD!1 and D
@1 and sum these expressions keeping only the few
terms. Integration over the orientations of the unit vectoq̂
(*dV[*0

pdu sin(u)*0
2pdf) then gives

s~ k̂!5
l

64p5/2
A a

B3H 24pS 12
b

3 D1
1

3Z3
@ I 12b„I 2~ k̂x

2

1 k̂y
2!1I 3k̂z

2
…#14p221/3A3ZF12

b

7
~2k̂x

212k̂y
2

13k̂z
2!G1Z2@ I 42b„I 5~ k̂x

21 k̂y
2!1I 6k̂z

2
…#J , ~3.5!

where

Z5A4pc0FAa

l

D*
D G1/3

, D* 5lmAa,

I 152

ApGS 5

6D 2

GS 13

6 D , I 252

ApGS 5

6DGS 11

6 D
GS 19

6 D ,

I 352

GS 5

6D 2

GS 3

2D
GS 19

6 D ,

I 45

GS 1

6D 3

Ap
, I 552

ApGS 1

6DGS 7

6D
GS 11

6 D , I 652

GS 3

2DGS 1

6D 2

GS 11

6 D .

This procedure relies on a number of approximations. Ho
ever, any direct analysis of Eq.~2.23! is impossible and we
use Eq.~3.5! for moderate shear rates.

Since Eq.~3.5! does not depend on the renormalized te
perature, the integration in Eq.~2.30! is trivial and gives

F5@t1s~n!#a21
1

4
la4~12b!22hadn

y
2,1 , ~3.6!

where

t52„~xN!s2xN….

Minimization with respect toa gives to the first order inh
05180
st

-

-

F52
@t1s~n!#2

l~12b!
22hA22

t1s~n!

l~12b!
dn

y
2,1 . ~3.7!

The order-disorder transition~ODT! occurs whenF be-
comes negative. The corresponding transition temperatu

ts~n!52s~n!, ~3.8!

which coincides with Eq.~2.22!. The orientation with the
lowests will appear immediately below the ODT temper
ture. The crossover~the A transition! is then located at such
a value ofD that s i2s' changes its sign. From Eq.~3.5!,
this point is given by

s i2s';
1

3Z2
~ I 32I 2!1

4p2

7
21/3A3Z1Z2~ I 62I 5!50,

~3.9!

and is found to be

Dcr'43103ma. ~3.10!

From Eq. ~3.9! it also follows that ts
i.ts

' for D,Dcr ,
which fits the weak-shear behavior discussed in the be
ning of this section. WhenD.Dcr , the perpendicular orien
tation first appear below the spinodal. This crossover is
picted in Fig. 3.

As it was noticed before@7,8#, the mean-field behavior is
restored in the limitD→`. On the other hand, the small-D
region is dominated by fluctuations. Thus,Dcr may be inter-
preted as a position of a crossover from the fluctuation
mean-field behavior. The scaling properties ofDcr follow
from Eq. ~3.10! and are determined by the Onsager coe
cientm. Using the results of@33–36#„m[q0

2l(q0)/N with l
from @34,35#… we obtain

Dcr;N23, ~3.11!

which shows that the fluctuation region disappears in
limit N→`. In equilibrium, the same conclusion was draw
in @2,31#.

FIG. 3. Schematic behavior of the spinodal temperatures for
parallel and perpendicular orientations in the vicinity of the cro
over point.
3-6
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Finally, we emphasize that the results of this section
independent of the surface interaction. The same results
be obtained within the Fredrickson theory@8# (h50).

B. B and C transitions

In the previous section, we have discussed the ord
disorder transitions. Now we consider lower temperatu
and look for transitions between different orientations in
strong-shear limit. The corresponding free energies are g
by Eq. ~3.7!

F i52
~t1s i!

2

l~12b!
22hA22

t1s i

l~12b!
, ~3.12!

F'52
~t1s'!2

l~12b!
,

wheres(n) is given by its high-shear limit of Eq.~3.5!

s~n!5
~al!2/3

B3/2 S D*
D D 1/321/3A3

8
Ac0F12

b

7
~2ny

213nz
2!G .
~3.13!

To the leading order inD* /D, the transition from the
perpendicular to parallel orientation occurs at temperatu
that are the roots of the equationF i5F'

t152s i2
~s i2s'!4

8h2l~12b!
,

t252
2h2l~12b!

~s i2s'!2
, if h2l~12b!.~s i2s'!3,

~3.14!

where

s i2s'5b
21/3A3c0

56

~al!2/3

B3/2 S D*
D D 1/3

. ~3.15!

There,t1 corresponds to the'→i transition, whilet2 to the
reverse one. Now we summarize our results in a phase
gram.

IV. DISCUSSION OF THE PHASE DIAGRAM AND
CONCLUSION

In this paper, we incorporated some real-system prop
ties into the previously developed theory of the orientatio
phase transitions under shear flow@7–9#. In particular, we
considered the influence of the shear-cell boundaries in
gradient direction on the orientation of the lamellar phase
equilibrium, the lamellae are known to orient parallel wi
respect to the boundaries@12,13#. Under shear, the tendenc
to orient parallel to the surfaces competes with the orien
tion favored by the flow that appears as a result of the c
pling between the flow velocity field and the order-parame
fluctuations@7,8#. The interplay between these two facto
produces the nontrivial phase diagram shown in Fig. 4.
05180
e
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e
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ia-

r-
l

e
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-
-
r

At low shear rates, the parallel orientation is preferred
both the shear and surface terms in Eq.~2.29!. Therefore, it
is the only stable orientation in that part of the phase d
gram. When shear rate reaches the valueDcr given by Eq.
~3.10!, the perpendicular orientation becomes stable imme
ately below the ODT temperature. We associate this cha
in orientation with the crossover from the fluctuatio
dominated behavior to the mean-field one. Indeed, at v
small shear rates, the equilibrium fluctuation spectrum
only slightly modified by the flow, while at high shear rate
the flow strongly suppresses fluctuations and restores
mean-field behavior. Therefore, there is a crossover p
and the corresponding change of orientation.

At high shear rates and away from the spinodal, the s
face influence starts to play an important role. In the narr
region betweenDcr andD1, estimated from the condition in
Eq. ~3.14!

D152
~3c0!3/2

563

b

12b
D*

la2

h2B9/2
,

the influence of shear is still very strong and is capable
stabilizing the perpendicular orientation at all temperatur
The size of this region is very small due to the scalingD1
;N213/2. When D.D1, there appears a region where th
parallel orientation is stable. It takes over the perpendicu
one att5t1 and looses its stability again att5t2 given by
Eq. ~3.14!. This region grows as the shear rate increases,
in the limit D5`, the parallel orientation occupies the who
range of temperatures (0,2`). This coincides with the pre-
dictions of the equilibrium mean-field theory@12,13#. We
therefore argue that there is no sharpC transition as shown in
Fig. 1. Since the region between the spinodal and the par
phase shrinks with an increase of the shear rate, there
always be some valueD2 such that forD.D2 the size of
this region will be smaller than the resolution of the expe

FIG. 4. Phase diagram for the lamellar phase under ste
simple shear flow as predicted in this work.
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mental device. This valueD2 may be misinterpreted as
position of an additional transition.

An important feature of our theory is that it is able
reproduce theB transition without additional assumptions.
the previous theory@8#, Fredrickson had to take into accou
the difference in viscosities of the pure components in or
to reproduce theB transition. Namely, he puth@f#5h0
1h1f, which may be considered as a Taylor expansion
the viscosityh@f#. As a result, in strong-shear limit, the siz
of the stability region for the perpendicular phase is of or
of (h0 /h1)2 and grows asD→`. While depicting the main
physics, this approach has internal problems since the de
tive h1 is not a well-defined object and therefore, the who
theory depends on a phenomenological parameter that is
ficult to estimate. Moreover, Fredrickson’s theory does
predict the C transition. Our theory is free from these pro
lems. It, however, predicts thei→' transition at very low
temperatures in strong-shear limit, which was not observ
There could be several explanations of this prediction. F
this transition occurs at very low temperatures (t2) where
the weak-segregation theory does not work. Second,
transition might be an artifact of theO(h) expansion. Fi-
nally, this transition may be removed if we use Fredrickso
argument about the viscosity dependence on the order
rameter. It stabilizes the parallel orientation at low tempe
tures.

It is possible that the absolute value of the surface in
action is small. However, since it acts as asymmetry-
breakingfactor, its influence is very important@14,15#. This
statement may be checked experimentally. We have sh
that the positions of the transition lines in the strong-sh
limit are dependent on the strength of the surface-copoly
interactionh;(xN)cop-sur f . Therefore, the phase diagra
of a particular copolymer system depends on the materia
the shear-cell walls. A systematic study of this depende
will provide arguments for or against our theory.

In this paper, we have considered the influence of
walls in the gradient direction. We also want to comment
the role of the boundaries in the other shear directions~flow
and vorticity!. Formally, these walls will also induce align
ment parallel to themselves. However, the flow profile n
those walls is no longer a simple triangular one and we
pect this disordered flow to destroy their orientational te
dency. Moreover, the distance between those surfaces is
mally much larger than between the walls in the gradi
direction and their influence is thus weaker. Therefore,
neglected them in our work.

Finally, we want to discuss, briefly, possible modific
tions and extensions of the developed theory. A very in
esting problem is to calculate the alterations of the den
profile in a confined system under shear. This may
achieved by restoring the position dependency in the am
tude a and deriving the corresponding amplitude equat
from Eq. ~2.15!. In the absence of shear, this problem w
solved in @12#. Another possibility is to use our formalism
for other external fields rather than interactions with s
faces. A good example is an electric field that is coupled
the square of the order parameter@37,38#. With some modi-
fications Eqs.~2.15, 2.16! may be a starting point for the
05180
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corresponding theory. The importance of such a theory fo
system in electric field and simultaneously under shear
outlined in @38#.
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APPENDIX: INFLUENCE OF THERMAL FLUCTUATIONS

Here, we want to emphasize the role of fluctuations in o
theory. We are going to show that if the Fokker-Planck E
~2.3! is replaced by a deterministic one, the theory will n
be able to discriminate between different orientations. W
follows should not be considered as a proof but, more like
as an illustration that has general features.

Let us consider a Langevin equation equivalent to
Fokker-Planck Eq.~2.3!. If we now remove the noise term,
reads

]f

]t
1v•“f5m̃“

2
dHL

df
, ~A1!

where an Onsager mobilitym̃ differs fromm in Eq. ~2.3! and
HL is the Leibler Hamiltonian@Eq. ~2.11!# without Hs and
h50. A similar equation was considered in@39#. There the
authors used a Hamiltonian withl15l250 and showed tha
in steady state, the theory predicts both orientations to
equally stable at all shear rates. This is not surprising si
their theory does not contain fluctuations and the angu
dependence of the fourth-order vertex functionG4—the two
ingredients that were argued to be crucial in explaining
reorientation phenomena@8,9,27#.

In order to separate these two effects, we keep the ang
dependence inG4 (l1 , l2Þ0), but use the deterministic Eq
~A1!. We follow the approach of@39# and derive an ampli-
tude equation from Eq.~A1! assuming a single plane-wav
density profile. The solution of this equation is

A~ t !5F P~ t !

A~0!2
13P~ t !E

0

t

dt f ~t!P21~t!G21/2

, ~A2!

and

f ~ t !5114Q4S l112l2

l0
D , P~ t !5expF22E

0

t

dt s~t!G ,
s~ t !5~11e!Q22Q42

1

4
, Q25qx

21~qy2Dtqx!
21qz

2 ,

whereA is the amplitude,e5(x̄2x̄s)/x̄s , and the amplitude

and the units of length and time are scaled withAx̄s /l0,
AB/x̄s, andB/(m̃x̄s

2), respectively. We see that the equati
becomes symmetric with respect to the interchangeqy↔qz .
3-8
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Thus, even in the presence of the angular dependence inG4,
it is impossible to distinguish between the parallel and p
pendicular orientations starting from Eq.~A1!.

We believe that a theory without fluctuations of the ord
parameter is not capable of describing the reorientatio
is

,

ac

c-

.

05180
r-

r
al

transitions. There are phenomena where fluctuations o
modify a deterministic behavior@40–42#. However, the ori-
entational behavior under shear flow does not belong to
class of phenomena. It can only occur in the presence
thermal fluctuations.
.
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